AIS328DQ: high-performance, ultra-low-power, 3-axis digital output accelerometer for automotive non-safety applications ### Introduction This document provides application information for the low-voltage 3-axis digital output linear MEMS accelerometer provided in a QFN package. The AIS328DQ is a high-performance ultra-low-power 3-axis linear accelerometer, which belongs to the automotive non-safety family of MEMS accelerometers, with digital I^2C/SPI serial interface standard output. The device features ultra-low-power operational modes that allow advanced power saving and smart sleep-to-wakeup functions and may be used in a variety of automotive non-safety applications such as telematics boxes, e-call systems and crash recording. The AIS328DQ has dynamically user-selectable full scales of $\pm 2~g~/\pm 4~g~/\pm 8~g$ and is capable of measuring acceleration with output data rates from 0.5 Hz to 1 kHz. The self-test capability allows the user to check the functioning of the sensor in the final application. The device can be configured to generate interrupt signals in response to inertial wake-up/free-fall events or based on the position of the device itself. The thresholds and timing of interrupt generators are programmable by the end user while fully operational. The AIS328DQ is available in a small, quad flat no-lead package (QFN) with a reduced 4x4 mm footprint and is guaranteed to operate over a wide temperature range of -40 °C to +105 °C. ## 1 Pin description Figure 1. Pin connections Table 1. Pin description | Pin# | Name | Function | Pin status | |-------|----------|---|-----------------------------| | 1 | NC | Not connected | | | 2 | NC | Not connected | | | 3 | INT_2 | Interrupt pin 2 | Output forced to GND | | 4 | Reserved | Connect to GND | | | 5 | VDD | Power supply | | | 6 | GND | 0 V supply | | | 7 | INT_1 | Interrupt pin 1 | Output forced to GND | | 8 | GND | 0 V supply | | | 9 | GND | 0 V supply | | | 10 | GND | 0 V supply | | | 44 | SPC | SPI serial port clock (SPC) | Lance A coddle and the co | | 11 | 11 SCL | I ² C serial clock (SCL) | Input with pull-up | | | | SPI enable | | | 12 | CS | I ² C/SPI mode selection: | Input with pull-up | | 12 | 00 | (0: SPI enabled; I ² C disabled | mput with pull-up | | | | 1: SPI idle mode / I ² C communication enabled) | | | 13 | Reserved | Connect to Vdd | | | 14 | VDD_IO | Power supply for I/O pins | | | 45 | SDO | SPI serial data output (SDO) | I manufacció de mantilación | | 15 | SA0 | I ² C less significant bit of the device address (SA0) | Input with pull-up | | | SDI | SPI serial data input (SDI) | | | 16 | SDO | 3-wire interface serial data output (SDO) | Input with pull-up | | | SDA | I ² C serial data (SDA) | | | 17-24 | NC | Not internally connected | | AN5092 - Rev 2 page 2/30 # 2 Registers Table 2. Register table | Register name | Address | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | |-----------------|---------|-------|-------|------|---------|---------|-------|---------|---------| | WHO_AM_I | 0Fh | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | CTRL_REG1 | 20h | PM2 | PM1 | PM0 | DR1 | DR0 | Zen | Yen | Xen | | CTRL_REG2 | 21h | воот | HPM1 | HPM0 | FDS | HPen2 | HPen1 | HPCF1 | HPCF0 | | CTRL_REG3 | 22h | IHL | PP_OD | LIR2 | I2_CFG1 | I2_CFG0 | LIR1 | I1_CFG1 | I1_CFG0 | | CTRL_REG4 | 23h | BDU | BLE | FS1 | FS0 | STsign | 0 | ST | SIM | | CTRL_REG5 | 24h | - | - | - | - | - | - | TurnOn1 | TurnOn0 | | HP_FILTER_RESET | 25h | - | - | - | - | - | - | - | - | | REFERENCE | 26h | REF7 | REF6 | REF5 | REF4 | REF3 | REF2 | REF1 | REF0 | | STATUS_REG | 27h | ZYXOR | ZOR | YOR | XOR | ZYXDA | ZDA | YDA | XDA | | OUTX_L | 28h | XD7 | XD6 | XD5 | XD4 | XD3 | XD2 | XD1 | XD0 | | OUTX_H | 29h | XD15 | XD14 | XD13 | XD12 | XD11 | XD10 | XD9 | XD8 | | OUTY_L | 2Ah | YD7 | YD6 | YD5 | YD4 | YD3 | YD2 | YD1 | YD0 | | OUTY_H | 2Bh | YD15 | YD14 | YD13 | YD12 | YD11 | YD10 | YD9 | YD8 | | OUTZ_L | 2Ch | ZD7 | ZD6 | ZD5 | ZD4 | ZD3 | ZD2 | ZD1 | ZD0 | | OUTZ_H | 2Dh | ZD15 | ZD14 | ZD13 | ZD12 | ZD11 | ZD10 | ZD9 | ZD8 | | INT1_CFG | 30h | AOI | 6D | ZHIE | ZLIE | YHIE | YLIE | XHIE | XLIE | | INT1_SRC | 31h | - | IA | ZH | ZL | YH | YL | XH | XL | | INT1_THS | 32h | 0 | THS6 | THS5 | THS4 | THS3 | THS2 | THS1 | THS0 | | INT1_DURATION | 33h | 0 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | INT2_CFG | 34h | AOI | 6D | ZHIE | ZLIE | YHIE | YLIE | XHIE | XLIE | | INT2_SRC | 35h | - | IA | ZH | ZL | YH | YL | XH | XL | | INT2_THS | 36h | 0 | THS6 | THS5 | THS4 | THS3 | THS2 | THS1 | THS0 | | INT2_DURATION | 37h | 0 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | AN5092 - Rev 2 page 3/30 ### 3 Start-up sequence Once the device is powered up, it automatically downloads the calibration coefficients from the embedded Flash memory to the internal registers. When the boot procedure is complete (i.e. after about 5 milliseconds), the device automatically enters power-down mode. To turn on the device and gather acceleration data, it is necessary to select one of the operating modes through the CTRL_REG1 register, and to enable at least one of the axes. The following general-purpose sequence can be used to configure the device: - 1. Write CTRL REG1 - 2. Write CTRL_REG2 - 3. Write CTRL REG3 - 4. Write CTRL_REG4 - 5. Write Reference - 6. Write INT1_THS - 7. Write INT1 DUR - 8. Write INT2 THS - 9. Write INT2_DUR - 10. Read HP_FILTER_RESET (if filter is enabled) - 11. Write INT1 CFG - 12. Write INT2 CFG - 13. Write CTRL REG5 Register values can be changed at any time and with the device in any operating mode. Modifications take effect immediately. Note that in case of changes in full scale, ODR or enabling/disabling of self-test, the output of the device will require 1 ms + 1/ODR to settle (see Table 12). If the HP filter cutoff frequency is changed, the filter can be reset by reading the HP_FILTER_RESET register. AN5092 - Rev 2 page 4/30 ### 3.1 Reading acceleration data #### 3.1.1 Using the status register The device features a STATUS_REG register which should be polled to check when a new set of data is available. The reading procedure is the following: - 1. Read STATUS REG - 2. If STATUS REG(3) = 0, then go to 1 - 3. If STATUS REG(7) = 1, then some data have been overwritten - 4. Read OUTX L - 5. Read OUTX_H - 6. Read OUTY L - 7. Read OUTY H - 8. Read OUTZ L - 9. Read OUTZ H - 10. Data processing - 11. Go to 1 The check performed at step 3 determines whether the reading rate is adequate compared to the data production rate. In cases where one or more acceleration samples have been overwritten by new data due to an excessively slow reading rate, the ZYXOR bit of the STATUS REG register is set to 1. The overrun bits are automatically cleared when all the data present inside the device have been read and new data have not been produced in the meantime. ### 3.1.2 Using the data-ready signal The device may be configured to have one HW signal to determine when a new set of measurement data is available to be read. This signal is represented by the XYZDA bit of the STATUS_REG register. The signal can be driven to the INT1 or INT2 pins and its polarity set to active-low or active-high through the CTRL_REG3 register. The interrupt is reset when the higher part of the data of all the enabled channels has been read. ### 3.1.3 Using the block data update feature If reading the acceleration data is particularly slow and cannot be (or does not need to be) synchronized with either the XYZDA bit within the STATUS_REG or with the RDY signal, it is strongly recommended to set the BDU (block data update) bit in CTRL_REG4 to 1. This feature prevents the need to read the values (most significant and least significant parts of the acceleration data) related to different samples. In particular, when the BDU is activated, the data registers related to each channel always contain the most recent acceleration data produced by the device. But if the reading of a given pair (i.e. OUTX_H and OUTX_L, OUTY_H and OUTY_L, OUTZ_H and OUTZ_L) is initiated, the refresh for that pair is blocked until both the MSB and LSB parts of the data are read. Note: BDU only guarantees that OUTX(Y, Z)_L and OUTX(X,Z)_H have been sampled at the same moment. If the reading speed is too slow, it is possible, for example, to read X and Y sampled at T1 and Z sampled at T2. AN5092 - Rev 2 page 5/30 ### 3.2 Output data rate selection and read timing The output data rate is user-selectable through the DRx bits of the CTRL_REG1 (20h) register. At power-on-reset, the DRx bits are reset to 0, thus providing a default output data rate of 50 Hz. The analog signal coming from the mechanical sensor is filtered by a low-pass filter before being converted by the internal ADC. The frequency at -3 dB of the low-pass filter determines the effective system resolution. The cutoff frequency depends on the DR[1:0] bits in the CTRL_REG1 (20h) register, refer to the following table. | DR1, DR0 | Output data rate | Analog filter
cutoff frequency (-3 dB) | |----------|------------------|---| | 00 | 50 Hz | 37 Hz | | 01 | 100 Hz | 74 Hz | | 10 | 400 Hz | 292 Hz | | 11 | 1000 Hz | 780 Hz | Table 3. Output data rate Note: The output data rate precision is related to the internal oscillator; an error of $\pm 10\%$ should be taken into account. A typical reading period is defined which is 616 μ s shorter than the output data rate period, in order to prevent the loss of any data produced. During this time period the reading of the data must be performed and the data-ready signal can be used as a trigger to begin the reading sequence. At the end of the complete sequence, the data-ready signal goes down and the rising edge that follows signals that new data are available. If this minimum reading frequency is not observed, some data loss is possible and the data-ready signal is no longer considered a trigger signal. The status register can be used to infer the occurrence of an overrun. Figure 2. Read timing Table 4. Timing value to prevent data loss | Time | Description | Тур | |------|---------------------|--------| | ТО | Data rate | 1/ODR | | T1 | Reading period | T0-T2 | | T2 | New data generation | 616 µs | AN5092 - Rev 2 page 6/30 ### 3.3 Data ready vs. interrupt signal The device has two pins which can be activated to generate either the data-ready signal or the interrupt signal. The functionality of the pins is selected acting on bit I1(2)_CFGx bits of the CTRL_REG3 register, according to Table 5 and the block diagram shown in Figure 3. | I1(2)_CFG1 | I1(2)_CFG0 | INT 1(2) Pin | |------------|------------|--| | 0 | 0 | Interrupt 1 (2) source | | 0 | 1 | Interrupt 1 source OR Interrupt 2 source | | 1 | 0 | Data ready | | 1 | 1 | Boot running | Table 5. Data signal on INT 1 and INT 2 pads Figure 3. Interrupt and data-ready signal generation block diagram In particular, the data-ready (DR) signal rises to 1 when a new set of acceleration data has been generated and is available to be read. The signal is reset after all the enabled channels are read through the serial interface. ACCEL DATA Accel. Sample #(N) Accel. Sample #(N+1) Accel. Sample #(N+1) DATA READ X Y Z X Y Z X Y Z Figure 4. Data-ready signal AN5092 - Rev 2 page 7/30 ### 3.4 Understanding acceleration data The measured acceleration data are sent to the OUTX_H, OUTX_L, OUTY_H, OUTY_L, OUTZ_H and OUTZ_L registers. These registers contain, respectively, the most significant part and the least significant part of the acceleration signals acting on the X, Y and Z axes. The complete acceleration data for the X (Y, Z) channel is given by the concatenation OUTX_H & OUTX_L (OUTY H & OUTZ L, OUTZ L) and is expressed as a 2's complement number. Acceleration data are represented as 12-bit numbers (left justified). ### 3.4.1 Big-little endian selection The AIS328DQ allows the swapping of the content of the lower and the upper part of the acceleration registers (i.e. OUTX_H with OUTX_L), to be compliant with both little-endian and big-endian data representations. "Little endian" means that the low-order byte of the number is stored in memory at the lowest address, and the high-order byte at the highest address (the little end comes first). This mode corresponds to bit BLE in the CTRL REG4 set to 0 (default configuration). Conversely, "big endian" means that the high-order byte of the number is stored in memory at the lowest address, and the low-order byte at the highest address. ### 3.4.2 Example of acceleration data The following table provides a few basic examples of the data that will be read in the data registers when the device is subject to a given acceleration. The values listed in the table are based on the assumption that the device is perfectly calibrated (i.e., no offset, no gain error, etc.) and show the effect of the BLE bit. BLE = 0 **BLE = 1 Acceleration values** Register address 28h 29h 28h 29h 00h 00h 00h 00h 0 g 343 mg E0h 15h 15h E0h 1004 mg 00h 40h 40h 00h -343 mg 20h EAh EAh 20h C0H C0H -1004 mg 00h Table 6. Output data register content vs. acceleration (FS = $\pm 2 g$) AN5092 - Rev 2 page 8/30 ### 4 Operating modes The AIS328DQ can operate in the following four modes, which are selected through the configuration of CTR_REG1 and CTRL_REG5: - Power-down - Normal mode - · Low-power - Sleep-to-wake With reference to the datasheet of the device, the PowerMode (PM) and DataRate (DR) bits of CTRL_REG1 register are used to select the basic operating modes (power-down, normal mode and low-power). The TurnOn bits of the CTRL_REG5 register are used to enable sleep-to-wake, which is an advanced mode involving the interrupt configuration also. Note: The PMx bits are disabled if the TurnOnx bits of CTRL_REG5 are not configured as zeros. Table 7. Power mode and low-power output data rate configurations | PM2 | PM1 | PM0 | Power mode selection | Output data rate [Hz]
ODR _{LP} | |-----|-----|-----|----------------------|--------------------------------------------| | 0 | 0 | 0 | Power-down | | | 0 | 0 | 1 | Normal mode | ODR | | 0 | 1 | 0 | Low-power | 0.5 | | 0 | 1 | 1 | Low-power | 1 | | 1 | 0 | 0 | Low-power | 2 | | 1 | 0 | 1 | Low-power | 5 | | 1 | 1 | 0 | Low-power | 10 | Table 8. CTRL_REG1 - data rate | DR1 | DR0 | Data rate generation [Hz] ODR | |-----|-----|-------------------------------| | 0 | 0 | 50 | | 0 | 1 | 100 | | 1 | 0 | 400 | | 1 | 1 | 1000 | Table 9. CTRL_REG5 - sleep-to-wake configuration | TurnOn1 | TurnOn0 | Sleep-to-wake status | | | | |---------|---------|--------------------------------------------------------------------------|--|--|--| | 0 | 0 | Sleep-to-wake function disabled | | | | | 0 | 1 | An interrupt event has occurred and the system is generating data at ODR | | | | | 1 | 0 | Not allowed | | | | | 1 | 1 | Sleep-to-wake function enabled | | | | AN5092 - Rev 2 page 9/30 Table 10 and Table 11 show the typical power consumption values (@ Vdd = 3.3 V) for the different operating modes. Note: Higher data rates correspond to lower device resolution. Table 10. Power consumption - normal mode (µA) | ODR | 50 Hz | 100 Hz | 400 Hz | 1000 Hz | |-------------------|-------|--------|--------|---------| | Power consumption | 290 | 300 | 330 | 400 | Table 11. Power consumption - low-power mode (µA) | ODR _{LP} | 0.5 Hz | 1 Hz | 2 Hz | 5 Hz | 10 Hz | |-------------------|--------|------|------|------|-------| | DR[1:0] = 00 | 11 | 18 | 32 | 70 | 125 | | DR[1:0] = 01 | 9 | 13 | 22 | 45 | 90 | | DR[1:0] = 10 | 9 | 13 | 22 | 45 | 90 | | DR[1:0] = 11 | 7 | 9 | 14 | 30 | 60 | #### 4.1 Power-down mode When the device is in power-down mode, almost all internal blocks of the device are switched off to minimize power consumption. Digital interfaces (I²C and SPI) are still active to allow communication with the device. The content of the configuration register is preserved and output data registers are not updated, thus keeping in memory the last data sampled before going to power-down mode. Table 12. Turn-on time in normal mode | Data rate generation (Hz) | Turn-on time - typ. (ms) | |---------------------------|--------------------------| | 50 | 21 | | 100 | 11 | | 400 | 3.5 | | 1000 | 2 | ### 4.2 Normal mode In Normal mode, data are generated at the data rate (ODR) selected through the DR bits and for the axis enabled through the Zen, Yen and Xen bits of the CTRL_REG1 register. Data generated for a disabled axis is 00h. Data interrupt generation is active and configured through the INT1_CFG and INT2_CFG registers. Typical turn-on time in normal mode is 1 ms + 1/ODR, as indicated in Table 12. ### 4.3 Low-power mode When the device is in low-power mode, data are produced at the ODR_{LP} selected by the PM bits of CTRL_REG1. Data interrupt generation is active and configured through the INT1_CFG and INT2_CFG registers. Typical turn-on time in low-power mode is 1 ms + 1/ODR. AN5092 - Rev 2 page 10/30 ### 4.4 Sleep-to-wake The sleep-to-wake function, in conjunction with low-power mode, allows further reduction of system power consumption and the development of new smart applications. The AIS328DQ can be set in a low-power operating mode, characterized by lower data rate refreshes. In this way the device, even if "sleeping", continues sensing acceleration and generating interrupt requests. When the sleep-to-wake function is activated, the AIS328DQ is able to automatically wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature the system can be efficiently switched from low-power mode to full performance, depending on user-selectable positioning and acceleration events, thus ensuring power saving and flexibility. The sleep-to-wake function is activated through the TurnOnx bits of CTRL_REG5 (Table 9). When the device is in sleep-to-wake mode, it automatically samples the acceleration data at ODR_{LP} to verify if interrupt conditions have been reached. When an interrupt event occurs, the device goes back to generate data at ODR (Figure 5). If interrupt conditions have not been reached, the device remains in low-power mode at ODR_{LP}. The device is ready to immediately generate valid samples as soon as it exits from sleep-to-wake mode. Note: When an interrupt event occurs, the content of CTRL_REG5 changes to 0x01 while the content of CTRL_REG1 is left untouched. The PMx bits are ignored. To return to normal mode or low-power mode, the TurnOnx bits of CTRL_REG5 must be set to zero. Figure 5. Sleep-to-wake mode #### 4.4.1 Entering sleep-to-wake mode Perform the following procedure to set up the sleep-to-wake function: - 1. Configure the desired interrupt event (free-fall, wake-up, 6D position or 6D movement). - 2. Select the desired low power mode (ODR_{IP}) and data rate (ODR) in CTRL REG1. - Enable the sleep-to-wake mode through CTRL_REG5 (TurnOn1 = TurnOn0 = 1). Once an interrupt event occurs, the TurnOn bits change to TurnOn1 = 0 and TurnOn0 = 1 and the system generates data at ODR. The user can re-activate the sleep-to-wake function by executing step 3 again. #### 4.4.2 Exiting sleep-to-wake mode To return to normal mode or to low-power mode, the user must disable the sleep-to-wake function by setting TurnOn1 = TurnOn0 = 0. AN5092 - Rev 2 page 11/30 ### 5 High-pass filter The AIS328DQ provides embedded high-pass filtering capability to easily remove the DC component of the measured acceleration. As shown in the following figure, it is possible to independently apply the filter on the output data and/or on the interrupt data through the FDS, HPen1 and HPen2 bits of the CTRL_REG2 register configuration. This means that it is possible, for example, to obtain filtered data while interrupt generation works on unfiltered data. Figure 6. High-pass filter connections block diagram ### 5.1 Filter configuration As shown in the following table, two operating modes are possible for the high-pass filter. HPM1 HPM0 0 0 Normal mode (reset by reading HP_RESET_FILTER) 0 1 Reference mode 1 0 Same as configuration 00h 1 1 Not allowed Table 13. High-pass filter mode configuration The bandwidth of the high-pass filter depends on the selected ODR and on the settings of the HPCFx bits of CTRL_REG2. The high-pass filter cutoff frequencies (f_t) are shown in the following table. AN5092 - Rev 2 page 12/30 Table 14. High-pass filter cutoff frequency configuration | HPcoeff2,1 | f _t [Hz] | f _t [Hz] | f _t [Hz] | f _t [Hz] | |------------|---------------------|---------------------|---------------------|---------------------| | nrcoenz, i | Data rate = 50 Hz | Data rate = 100 Hz | Data rate = 400 Hz | Data rate = 1000 Hz | | 00 | 1 | 2 | 8 | 20 | | 01 | 0.5 | 1 | 4 | 10 | | 10 | 0.25 | 0.5 | 2 | 5 | | 11 | 0.125 | 0.25 | 1 | 2.5 | ### 5.1.1 Normal mode In this configuration the high-pass filter can be reset by reading the HP_FILTER_RESET register, instantly matching the output data to the input acceleration. Figure 7. Reading HP_FILTER_RESET AN5092 - Rev 2 page 13/30 ### 5.1.2 Reference mode In reference mode configuration the output data is calculated as the difference between the input acceleration and the content of the REFERENCE register. This register is in 2's complement representation and the value of 1LSB of these 7-bit registers depends on the selected full scale (refer to the following table). Table 15. Reference mode LSB value | Full scale | Reference mode LSB value (mg) | |------------|-------------------------------| | ±2 g | ~16 | | ±4 g | ~31 | | ±8 g | ~63 | Figure 8. Reference mode AN5092 - Rev 2 page 14/30 ### 6 Interrupt generation 1 1 The AIS328DQcan provide two interrupt signals and offers several possibilities for personalizing these signals. The registers involved in the interrupt generation behavior are CTRL_REG3, INT1_CFG, INT2_CFG, INT1_THS, INT2_THS, INT1_DURATION, and INT2_DURATION. The AIS328DQ interrupt signal can behave as free-fall, wake-up or 6D orientation detection. 6-direction position recognition AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events Table 16. Interrupt mode configuration Whenever an interrupt condition is verified, the interrupt signal is generated and by reading the INT1_SRC and INT2_SRC registers, it is possible to detect which condition has occurred. ### 6.1 Duration The content of the duration registers set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen. When in normal mode, duration time is measured in N/ODR, where N is the content of the duration register and ODR is 50, 100, 400, 1000 Hz. ODR (Hz) Duration LSB value (ms) 50 20 100 10 400 2.5 1000 1 Table 17. Duration LSB value in normal mode When in low-power mode, duration time is measured in N/ODR_{LP}, where N is the content of the duration register and ODR_{LP} is 0.5, 1, 2, 5, 10 Hz. Table 18. Duration LSB value in low-power mode | ODR (Hz) | Duration LSB value (s) | |----------|------------------------| | 0.5 | 2 | | 1 | 1 | | 2 | 0.5 | | 5 | 0.2 | | 10 | 0.1 | AN5092 - Rev 2 page 15/30 ### 6.2 Threshold Threshold registers define the reference accelerations used by the interrupt generation circuitry. The value of 1LSB of these 7-bit registers depends on the selected full scale (refer to the following table). Table 19. Threshold LSB value | Full scale | Threshold LSB value (mg) | |------------|--------------------------| | ±2 g | ~16 | | ±4 g | ~31 | | ±8 g | ~63 | ### 6.3 Free-fall and wake-up interrupts The AIS328DQ interrupt signals can behave as free-fall, wake-up or 6D orientation detection. When an interrupt condition is verified, the interrupt signal is generated and by reading the INT1_SRC and INT2_SRC registers it is possible to determine which condition has occurred. The free-fall signal (FF) and wake-up signal (WU) interrupt generation block is represented in Figure 9. Free-fall, wake-up interrupt generator . FF or WU interrupt generation is selected through the AOI bit in the INTx_CFG register. If the AOI bit is '0', signals coming from comparators are put in logical "OR". Depending on the values written in the INT1_CFG register, every time the value of at least one of the enabled axes exceeds the threshold written in the module in the INTx_THS registers, a WU interrupt is generated. Otherwise, if the AOI bit is '1', signals coming from the comparators go into an "AND" port. In this case, an interrupt signal is generated only if all the enabled axes exceed the threshold written in the INTx_THS register. The LIRx bits of the CTRL_REG3 can be used to determine whether or not the interrupt request must be latched. If the LIRx bit is '0' (default value), the interrupt signal goes high when the interrupt condition is satisfied and immediately returns low if the interrupt condition is no longer verified. Otherwise, if the LIRx bit is '1', when an interrupt condition is applied, the interrupt signal remains high even if the condition returns to a non-interrupt status, until a read operation of the INTx SRC register is performed. The ZHIE, ZLIE, YHIE, YLIE, XHIE and HLIE bits of the INTx_CFG register select on which axis the interrupt decision must be performed, and in which direction the threshold must be exceeded to generate the interrupt request. AN5092 - Rev 2 page 16/30 Figure 9. Free-fall, wake-up interrupt generator The threshold module which is used by the system to detect free-fall or inertial wake-up events is defined by the INTx_THS registers. The threshold value is expressed over 7 bits as an unsigned number and is symmetrical around the zero-g level. XH (YH, ZH) is true when the unsigned acceleration value of the X (Y, Z) channel is higher than INTx_THS. Similarly, XL, (YL, ZL) low is true when the unsigned acceleration value of the X (Y, Z) channel is lower than INTx_THS. Refer to the following figure for additional details. Figure 10. FF_WU_CFG high and low AN5092 - Rev 2 page 17/30 ### 6.4 Inertial wake-up The wake-up interrupt refers to a specific configuration of the INTx_CTRL registers that allows the interrupt generation when the acceleration on the configured axis exceeds a defined threshold (refer to the following figure). Figure 11. Inertial wake-up interrupt #### 6.4.1 HP filter bypassed This paragraph provides a basic algorithm which shows the practical use of the inertial wake-up feature. In particular, with the code below, the device is configured to recognize when the absolute acceleration along either the X or Y-axis exceeds a preset threshold (250 mg used in the example). The event which triggers the interrupt is latched inside the device and its occurrence is signaled through the use of the INT1 pin. - 1. Write 2Fh in CTRL REG1 - 2. Write 00h in CTRL_REG2 - 3. Write 00h in CTRL_REG3 - 4. Write 00h in CTRL_REG4 - 5. Write 00h in CTRL_REG5 - 6. Write10h in INT1_THS - 7. Write 00h in INT1_DURATION - 8. Write 0Ah in INT1_CFG - 9. Poll INT1 pad; if INT1=0 then go to 8 - 10. Read INT1_SRC - 11. (Wake-up event has occurred; insert code here) - 12. Go to 8 - // Turn on the sensor and enable X, Y and Z - // ODR = 100 Hz - // High-pass filter disabled - // Latched interrupt active high on INT1 pad - $// FS = \pm 2 q$ - // Sleep-to-wake disabled - // Threshold = 250 mg - // Duration = 0 - // Enable XH and YH interrupt generation - // Poll RDY/INT pin waiting for the - // wake-up event - // Return the event that has triggered the - // interrupt - // Event handling AN5092 - Rev 2 page 18/30 ### 6.4.2 Using the HP filter The code which follows provides a basic routine showing the practical use of the inertial wake-up feature performed on high-pass filtered data. In particular, the device is configured to recognize when the high-frequency component of the acceleration applied along either the X, Y or Z-axis exceeds a preset threshold (250 mg is used in the example). The event which triggers the interrupt is latched inside the device and its occurrence is signaled through the INT1 pin. | 1. Write | Write 2Fh in CTRL_REG1 | // Turn on the sensor, enable X, Y and Z | | | |---------------|-----------------------------------------------------|----------------------------------------------------|--|--| | | WIRE 21 ITHI CTRL_REGT | // ODR = 100 Hz | | | | 2. | Write 15h in CTRL_REG2 | // High-pass filter enabled on data and interrupt1 | | | | 3. | Write 00h in CTRL_REG3 | // Latched interrupt active high on INT1 pad | | | | 4. | Write 00h in CTRL_REG4 | // FS = ±2 g | | | | 5. | Write 00h in CTRL_REG5 | // Sleep-to-wake disabled | | | | 6. | Write10h in INT1_THS | // Threshold = 250 mg | | | | 7. | Write 00h in INT1_DURATION | // Duration = 0 | | | | | | // Dummy read to force the HP filter to | | | | 8. | Read HP_FILTER_RESET | // actual acceleration value | | | | | | // (i.e. set reference acceleration/tilt value) | | | | 9. | Write 2Ah in INT1_CFG | // Configure desired wake-up event | | | | 10. Poll INT1 | Poll INT1 pad; if INT1 = 0 then go to 9 | // Poll INT1 pin waiting for the | | | | | Toll INT I pad, il INT I = 0 then go to 9 | // wake-up event | | | | 11. | (Wake-up event has occurred; insert your code here) | // Event handling | | | | 12. | Read INT1_SRC | // Return the event that has triggered the | | | | 12. | read INTI_SRC | // interrupt and clear interrupt | | | | 13. | (Insert code here) | // Event handling | | | | 14. | Go to 9 | | | | At step 8, a dummy read of the HP_FILTER_RESET register is performed to set the current/reference acceleration/tilt state against which the device performed the threshold comparison. This read may be performed any time it is required to set the orientation/tilt of the device as a reference state without waiting for the filter to settle. AN5092 - Rev 2 page 19/30 ### 6.5 Free-fall detection Free-fall detection refers to a specific configuration of the INTx_CTRL registers that allows the recognition of device free-fall: the acceleration measurements along all the axes go to zero. In real cases, a "free-fall zone" is defined around the zero-g level, where all accelerations are small enough to generate the interrupt (refer to the following figure). Z Y 0g FREE-FALL ZONE X FF Interrupt Figure 12. Free-fall interrupt This paragraph provides the fundamentals for using the free-fall detection feature. In particular, the software routine which configures the device to detect and signal free-fall events is as follows: - 1. Write 2Fh in CTRL_REG1 - 2. Write 00h in CTRL_REG2 - 3. Write 04h in CTRL_REG3 - 4. Write 16h in INT1_THS - 5. Write 03h in INT1_DURATION - 6. Write 95h in INT1_CFG - 7. Poll INT1 pad; if INT1 = 0 then go to 8 - 8. (Free-fall event has occurred; insert your code here) - 9. Read INT1_SRC register - 10. Go to 7 - // Turn on the sensor, enable X, Y and Z - // ODR = 100 Hz - // High-pass filter disabled - // Latched interrupt on INT1 - // Set free-fall threshold = 350 mg - // Set minimum event duration - // Configure free-fall recognition - // Poll INT1 pin waiting for the free-fall event - // Event handling - // Clear interrupt request The code sample exploits a threshold set at 350 mg for free-fall recognition and the event is notified by the hardware signal INT1. At step 5, the INT1_DURATION register is configured to ignore events that are shorter than $3/DR = 3/100 \sim 30$ ms in order to avoid false detections. Once the free-fall event has occurred, a read of the INT1_SRC register clears the request and the device is ready to recognize other events. AN5092 - Rev 2 page 20/30 ### 6.6 6D direction The AIS328DQ features an advanced capability to detect the orientation of the device in space. The 6D direction function can be enabled through the AOI and 6D bits of the INT1_CFG register (Table 16). When configured for the 6D function, the ZH, ZL, YH, YL, XH, XL bits of INTx_SRC send information about the value of the acceleration generating the interrupt when it exceeds the threshold, and whether the acceleration value is positive or negative. More specifically: - ZH (YH, XH) is 1 when the sensed acceleration is greater than the threshold in the positive direction. - ZL, (YL, XL) is 1 when the sensed acceleration is greater than the threshold in the negative direction. Figure 13. ZH, ZL, YH, YL, XH, XL behavior There are two possible configurations for the 6D direction function: - **6D movement recognition**: In this configuration the interrupt is generated when the device moves from one direction (known or unknown) to a different, known direction. The interrupt is active only for 1/ODR. - 6D position recognition: In this configuration the interrupt is generated when the device is stable in a known direction. The interrupt is active as long as the position is maintained, as shown in Figure 14, (a) and (b). In Figure 14, the 6D Movement line shows the behavior of the interrupt when the device is configured for 6D Movement recognition on the X and Y axes (INT1_CFG = 0x4Ah), while the 6D Position line shows the behavior of the interrupt when the device is configured for 6D Position recognition on the X and Y axes (INT1_CFG = 0xCAh). INT1 THS is set to 0x21. With reference to Figure 15, the device has been configured for the 6D Position function on the X, Y and Z axes. Table 20 shows the content of the INT1_SRC register for each position. Figure 14. 6D movement vs. 6D position AN5092 - Rev 2 page 21/30 Figure 15. 6D recognized positions Table 20. INTx_SRC register in 6D position | Case | IA | ZH | ZL | YH | YL | ХН | XL | |------|----|----|----|----|----|----|----| | (a) | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | (b) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | (c) | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | (d) | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | (e) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | (f) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | AN5092 - Rev 2 page 22/30 ### 7 Self-test The embedded self-test functions allow checking device functionality without moving it. When the self-test is enabled, an actuation force is applied to the sensor, leading to a deflection of the moveable part of the sensor. In this case the sensor outputs exhibit a change in their DC levels which are related to the selected full scale through the sensitivity value. The self-test function is off when the ST bit of the CTRL_REG4 register is programmed to 0; it is enabled when the ST bit is set to 1. The STsign bit of the CTRL_REG4 register can be used to configure the self-test sign: 0 for positive sign self-test, 1 for negative sign self-test. When the self-test is activated, the sensor output level is given by the algebraic sum of the data produced by the electrostatic test-force. The procedure consists of: - 1. enabling the accelerometer - 2. averaging five samples before enabling the self-test - 3. averaging five samples after enabling the self-test - 4. computing the difference in absolute value for each axis and verifying that it falls within a given range. The reference range is given in the following table: Table 21. Reference range | Min (@ Vmin) | X = -183 lsb | Y = 183 lsb | Z = 102 lsb | |--------------|---------------|--------------|--------------| | Max (@ Vmax) | X = -1510 lsb | Y = 1510 lsb | Z = 1326 lsb | The complete accelerometer self-test procedure is indicated in Figure 16. Self-test procedure. Note: Keep the device still during the self-test procedure. AN5092 - Rev 2 page 23/30 Figure 16. Self-test procedure ### **Revision history** Table 22. Document revision history | Date | Revision | Changes | |-------------|----------|---------------------------------------------------------------------------------------------------------| | 02-Feb-2018 | 1 | Initial release | | 08-Oct-2018 | 2 | Updated Introduction | | | | Updated Section 3.4 Understanding acceleration data | | | | Updated acceleration values in Table 6. Output data register content vs. acceleration (FS = $\pm 2 g$) | | | | Updated Section 6.3 Free-fall and wake-up interrupts | AN5092 - Rev 2 page 25/30 ### **Contents** | 1 | Pin (| descrip | tion | 2 | | | | | |---|-------|-------------------|---------------------------------------|----|--|--|--|--| | 2 | Regi | isters | | 3 | | | | | | 3 | Star | Start-up sequence | | | | | | | | | 3.1 | Readir | ng acceleration data | 5 | | | | | | | | 3.1.1 | Using the status register | 5 | | | | | | | | 3.1.2 | Using the data-ready signal | 5 | | | | | | | | 3.1.3 | Using the block data update feature | 5 | | | | | | | 3.2 | Output | t data rate selection and read timing | 6 | | | | | | | 3.3 | Data r | eady vs. interrupt signal | 7 | | | | | | | 3.4 | Under | standing acceleration data | 7 | | | | | | | | 3.4.1 | Big-little endian selection | 8 | | | | | | | | 3.4.2 | Example of acceleration data | 8 | | | | | | 4 | Ope | Operating modes | | | | | | | | | 4.1 | Power | r-down mode | 10 | | | | | | | 4.2 | Norma | al mode | 10 | | | | | | | 4.3 | Low-p | ower mode | 10 | | | | | | | 4.4 | Sleep- | -to-wake | 11 | | | | | | | | 4.4.1 | Entering sleep-to-wake mode | 11 | | | | | | | | 4.4.2 | Exiting sleep-to-wake mode | 11 | | | | | | 5 | High | ı-pass f | filter | 12 | | | | | | | 5.1 | Filter o | configuration | 12 | | | | | | | | 5.1.1 | Normal mode | 13 | | | | | | | | 5.1.2 | Reference mode | 14 | | | | | | 6 | Inter | rupt ge | eneration | 15 | | | | | | | 6.1 | Duratio | on | 15 | | | | | | | 6.2 | Thresh | hold | 15 | | | | | | | 6.3 | Free-fa | all and wake-up interrupts | 16 | | | | | | | 6.4 | | ll wake-up | | | | | | | | | 6.4.1 | HP filter bypassed | 18 | | | | | | | | | | | | | | | | | | 6.4.2 | Using the HP filter | 19 | |-------|---------|---------|---------------------|----| | | 6.5 | Free-fa | all detection | 20 | | | 6.6 | 6D dire | ection | 21 | | 7 | Self- | test | | 23 | | Rev | ision l | history | | 25 | | Con | itents | | | 26 | | List | of tab | les | | 28 | | l ist | of figu | ures | | 29 | ### **List of tables** | Table 1. | Pin description | . 2 | |-----------|-----------------------------------------------------------------|-----| | Table 2. | Register table | . 3 | | Table 3. | Output data rate | . 6 | | Table 4. | Timing value to prevent data loss | . 6 | | Table 5. | Data signal on INT 1 and INT 2 pads | . 7 | | Table 6. | Output data register content vs. acceleration (FS = $\pm 2~g$) | . 8 | | Table 7. | Power mode and low-power output data rate configurations | . 9 | | Table 8. | CTRL_REG1 - data rate | . 9 | | Table 9. | CTRL_REG5 - sleep-to-wake configuration | . 9 | | Table 10. | Power consumption - normal mode (µA) | 10 | | Table 11. | Power consumption - low-power mode (μA) | 10 | | Table 12. | Turn-on time in normal mode | 10 | | Table 13. | High-pass filter mode configuration | 12 | | Table 14. | High-pass filter cutoff frequency configuration | 13 | | Table 15. | Reference mode LSB value | 14 | | Table 16. | Interrupt mode configuration | | | Table 17. | Duration LSB value in normal mode | 15 | | Table 18. | Duration LSB value in low-power mode | | | Table 19. | Threshold LSB value | 16 | | Table 20. | INTx_SRC register in 6D position | | | Table 21. | Reference range | 23 | | Table 22. | Document revision history | 25 | # **List of figures** | Figure 1. | Pin connections | | |------------|----------------------------------------------------------|-----| | Figure 2. | Read timing | . 6 | | Figure 3. | Interrupt and data-ready signal generation block diagram | . 7 | | Figure 4. | Data-ready signal | . 7 | | Figure 5. | Sleep-to-wake mode | 11 | | Figure 6. | High-pass filter connections block diagram | 12 | | Figure 7. | Reading HP_FILTER_RESET | 13 | | Figure 8. | Reference mode | 14 | | Figure 9. | Free-fall, wake-up interrupt generator | 17 | | Figure 10. | FF_WU_CFG high and low | 17 | | Figure 11. | Inertial wake-up interrupt | 18 | | Figure 12. | Free-fall interrupt | 20 | | Figure 13. | ZH, ZL, YH, YL, XH, XL behavior | 21 | | Figure 14. | 6D movement vs. 6D position | 21 | | Figure 15. | 6D recognized positions | 22 | | Figure 16. | Self-test procedure | 24 | AN5092 - Rev 2 page 30/30