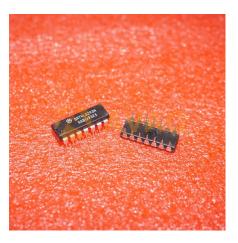


Counter/Divider Single 4-Bit Binary UP 14-Pin PDIP Tube


Manufacturer: <u>Texas Instruments, Inc</u>

Package/Case: DIP14

Product Type: Logic ICs

RoHS: RoHS Compliant/Lead free RoHS

Lifecycle: Active

Images are for reference only

Inquiry

General Description

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.

All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications. To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the QA output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '290 and 'LS290 counters by connecting the QD output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

Key Features

GND and VCC on Corner Pins (Pins 7 and 14 Respectively)

Description

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.

All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications. To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the QA output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-by-ten count can be obtained from the '290 and 'LS290 counters by connecting the QD output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output QA.

Recommended For You

SN74HC191N

Texas Instruments, Inc

DIP

SN74LS590N

Texas Instruments, Inc

DIP

SN74LS191N

Texas Instruments, Inc

DIP16

SN74LS163AN

Texas Instruments, Inc

DIP

SN74LV8154N

Texas Instruments, Inc

DIP-20

SN74LS90N

Texas Instruments, Inc

DIP14

SN74HC4040N

Texas Instruments, Inc

DIP16

SN74HC590AD

Texas Instruments, Inc

SOIC-16

SN74LS161AN

Texas Instruments, Inc

DIP16

SN74LS393N

Texas Instruments, Inc

DIP

SN74LS93N

Texas Instruments, Inc

DIP

SN54HC193J

Texas Instruments, Inc

CDIP

SN74HC163D

Texas Instruments, Inc

SOP

SN74F163AN

Texas Instruments, Inc

DIP16

SN74HC590AN

Texas Instruments, Inc

DIP16